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J. Phys. A: Gen. 18 (1985) L647-M50. Printed in Great Britain 

LETTER TO THE EDITOR 

Spiral self-avoiding walks on a triangular lattice: end-to-end 
distance 

K C Liu and K Y Lin 
Physics Department, National Tsing Hua University Hsinchu, Taiwan 300, Republic of 
China 

Received 1 May 1985 

Abstract. An exact solution is obtained for the root-mean-square end-to-end distance R N  
of spiral self-avoiding walks with N steps on a triangular lattice. For N + CO, R ,  increases 
as ( 2 ~ ) - ' ( 6 N ) ' ' *  log N. 

Spiral self-avoiding walks (SSAWS) on a square lattice were first considered by Privman 
(1983). It is shown by Blote and Hilhorst (1984) that, for N + CO the number of N-step 
spiral walks increases as 

s, - 2-23-5/4.rr~-7/4 exp[2.rr( ~ / 3 ) ' / ~ ] ,  (1) 

R N - ( 2 ~ ) - ~ ( 3 N ) ~ / * l o g  N. (2) 

and their root-mean-square end-to-end distance behaves as 

Similar results for SN are derived independently by Guttmann and Wormald (1984), 
Joyce (1984), and Guttmann and Hirschhorn (1984). Recently one of us (Lin 1985) 
considered SSAWS on a triangular lattice and it is shown that, for N + CO, SN increases 
as 

exp[.rr(2N/3)'/*]. (3) S, - 21/43-7/4.rrN-5/4 

In a recent letter, Joyce and Brak (1985) have obtained the complete asymptotic 
expansion for S,. In this letter we report an exact result for the end-to-end distance 
of SSAWS on a triangular lattice. We shall refer to Lin's paper as I and follow his 
notations unless specified otherwise. 

Consider first the simpler problem of the subclass of SSAWS which only spirals 
outward (see figure 1 of I). The generating function is 

G * ( z ) =  c S z z N  
N = l  

= .f c c Z X ' + . . . + . ~ ' + ,  

L=O o c x  I...<x' O < X L + I  

m 

=z( l -z ) - I  2 gL(z) 
L=O 

where 
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and 
L 

I = l  
g L ( z )  = n z’( 1 - zl)-I, L = 1,2, . . . . ( 5 )  

Following exactly the same procedure as Blote and Hilhorst (1984), it can be shown 
by the method of steepest descent that for z = 1 - E and E + Ot, 

G*(z) - 2-1’2~-’ exp(r2/12&).  ( 6 )  

For E + 0, the average chain length is 

N * ( z ) = d l o g  G*(z) /d logz- r2 /12E2 

and the relative fluctuations satisfy 

AN*/ N *  - ( N*)-1’4.  

The squared end-to-end distance is 

r 2  L - ~ ( A L - B L ) ~ + ( B L -  - 1 C L ) ’ + ( C L - A L ) ~ ]  

where 

(7)  

(9) 

k = l  

and [n ]  denotes the integer part of the real number n. When the expression of r2 is 
inserted inside the summations of (4), we have (for E + 0) 

03 

F ( ~ )  = s$( R $ ) ~ z ~  - ( R:,)’ s $ z N  
N = l  

where R: is the root-mean-square end-to-end distance. 
We define m,  = x l ,  mk = x k  - xk- l (  k > 1) and write 

Using the identities 
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where RL is given by 

R,(Z)=;  C ( 1 - z  3 k + l ) - l ) 2 + f  ( ( 1  - z ) - l  - 2 ( 1  - z3k '+2  ( k '  

(1 - z ) - l  -e ( 1  - Z ~ ~ + I ) - I  -e (1 - 
k k '  

)-'+I z 3 k ' + 2 ( 1  - z 3 k ' + 2 ) - 2 ,  + ~ ( i  - z ) - ~ + C  ~ ~ ~ ~ ~ ( 1 -  z ~ ~ + ~  
k k '  

k '  k'=O 
c k = [(LY31 k=O 

It has been pointed out by Blote and Hilhorst (1984) that at fixed z the quantity 
g L ( z )  takes maximum value for L = Lo( z )  - log 2/  E. Consequently we have 

F ( z )  - R L , ( Z ) G * ( Z ) .  (16) 

To calculate the leading term in RLo for E + 0, we replace the summations in ( 1 5 )  by 
integrals and it is elementary to show that 

RL0(z) - (log E ) ~ / ~ E ~ .  (17)  

R k  - T - ' N ' / ~  log N. 

It follows from ( 7 ) ,  (10) and (16 )  that for N -$ a 

( 1 8 )  

We now consider the proglem of all SSAWS. It follows from I that, for z = 1 - E  

and E + 0, the generating function behaves like 

N ( z )  - r 2 / 6 e 2 .  ( 2 1 )  

Consider G,(z )  first (see figure 3 of I). We deote the segment lengths by the integers 
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The squared end-to-end distance is 

( rL,Lr)2  = $ ( A  - B)'+ (B - C)'+ (C -A)'] 

where 

We define m, = x,  - x , - ,  and n, = y, - y , - , ( m ,  = x, and n ,  = y , )  where m, and nj are 
independent integer variables. We have 

A - B =  c 
k=O 

m L - 1 - 3 k  - 
k' 

nL'- I -3k'  

C - B = ( m L - 3 k +  mL-1-3k)  + nL,-3-3k'  
k=O k'=O 

C - A =  m L - 3 k +  ( n L - 3 - 3 k ' + n L ' - 1 - 3 k ' ) .  
k=O k'=O 

When the expression of r2 is inserted inside the summations of (D), we have for E + 0 

( & ) I - -  (log (27) 

where N ( E )  is the average chain length given by (21). Considerations of G2(z) and 
G6(z) yield identical results. Therefore finally we have 

RN - ( 2 ~ ) - ' ( 6 N ) ' ' ~  log N (28) 

for N + m .  
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