Spiral self-avoiding walks on a triangular lattice: end-to-end distance

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1985 J. Phys. A: Math. Gen. 18 L647
(http://iopscience.iop.org/0305-4470/18/11/003)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 17:05

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Spiral self-avoiding walks on a triangular lattice: end-to-end distance

K C Liu and K Y Lin
Physics Department, National Tsing Hua University Hsinchu, Taiwan 300, Republic of China

Received 1 May 1985

Abstract

An exact solution is obtained for the root-mean-square end-to-end distance R_{N} of spiral self-avoiding walks with N steps on a triangular lattice. For $N \rightarrow \infty, R_{N}$ increases as $(2 \pi)^{-1}(6 N)^{1 / 2} \log N$.

Spiral self-avoiding walks (ssaws) on a square lattice were first considered by Privman (1983). It is shown by Blöte and Hilhorst (1984) that, for $N \rightarrow \infty$ the number of N-step spiral walks increases as

$$
\begin{equation*}
S_{N} \sim 2^{-2} 3^{-5 / 4} \pi N^{-7 / 4} \exp \left[2 \pi(N / 3)^{1 / 2}\right] \tag{1}
\end{equation*}
$$

and their root-mean-square end-to-end distance behaves as

$$
\begin{equation*}
R_{N} \sim(2 \pi)^{-1}(3 N)^{1 / 2} \log N . \tag{2}
\end{equation*}
$$

Similar results for S_{N} are derived independently by Guttmann and Wormald (1984), Joyce (1984), and Guttmann and Hirschhorn (1984). Recently one of us (Lin 1985) considered ssaws on a triangular lattice and it is shown that, for $N \rightarrow \infty, S_{N}$ increases as

$$
\begin{equation*}
S_{N} \sim 2^{1 / 4} 3^{-7 / 4} \pi N^{-5 / 4} \exp \left[\pi(2 N / 3)^{1 / 2}\right] . \tag{3}
\end{equation*}
$$

In a recent letter, Joyce and Brak (1985) have obtained the complete asymptotic expansion for S_{N}. In this letter we report an exact result for the end-to-end distance of ssaws on a triangular lattice. We shall refer to Lin's paper as I and follow his notations unless specified otherwise.

Consider first the simpler problem of the subclass of ssaws which only spirals outward (see figure 1 of I). The generating function is

$$
\begin{align*}
G^{*}(z) & =\sum_{N=1}^{\infty} S_{N}^{*} z^{N} \\
& =\sum_{L=0}^{\infty} \sum_{0<x_{1} \ldots<x_{L}} \sum_{0<X_{L+1}} z^{x_{1}+\ldots+x_{L+1}} \\
& =z(1-z)^{-1} \sum_{L=0}^{\infty} g_{L}(z) \tag{4}
\end{align*}
$$

where

$$
g_{0}(z) \equiv 1
$$

and

$$
\begin{equation*}
g_{L}(z)=\prod_{l=1}^{L} z^{l}\left(1-z^{l}\right)^{-1}, \quad L=1,2, \ldots \tag{5}
\end{equation*}
$$

Following exactly the same procedure as Blöte and Hilhorst (1984), it can be shown by the method of steepest descent that for $z=1-\varepsilon$ and $\varepsilon \rightarrow 0^{+}$,

$$
\begin{equation*}
G^{*}(z) \sim 2^{-1 / 2} \varepsilon^{-1} \exp \left(\pi^{2} / 12 \varepsilon\right) \tag{6}
\end{equation*}
$$

For $\varepsilon \rightarrow 0$, the average chain length is

$$
\begin{equation*}
N^{*}(z)=\mathrm{d} \log G^{*}(z) / \mathrm{d} \log z \sim \pi^{2} / 12 \varepsilon^{2} \tag{7}
\end{equation*}
$$

and the relative fluctuations satisfy

$$
\begin{equation*}
\Delta N^{*} / N^{*} \sim\left(N^{*}\right)^{-1 / 4} \tag{8}
\end{equation*}
$$

The squared end-to-end distance is

$$
\begin{equation*}
r_{L}^{2}=\frac{1}{2}\left(\left(A_{L}-B_{L}\right)^{2}+\left(B_{L}-C_{L}\right)^{2}+\left(C_{L}-A_{L}\right)^{2}\right] \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{L}=x_{1}+x_{4}+\ldots=\sum_{k=0}^{[L / 3]} x_{3 k+1}, \\
& B_{L}=x_{2}+x_{5}+\ldots=\sum_{k=0}^{[(L-1) / 3]} x_{3 k+2}, \\
& C_{L}=x_{3}+x_{6}+\ldots=\sum_{k=1}^{([L+1) / 3]} x_{3 k},
\end{aligned}
$$

and [n] denotes the integer part of the real number n. When the expression of r^{2} is inserted inside the summations of (4), we have (for $\varepsilon \rightarrow 0$)

$$
\begin{equation*}
F(z) \equiv \sum_{N=1}^{\infty} S_{N}^{*}\left(R_{N}^{*}\right)^{2} z^{N} \sim\left(R_{N^{*}}^{*}\right)^{2} \sum S_{N}^{*} z^{N} \tag{10}
\end{equation*}
$$

where R_{N}^{*} is the root-mean-square end-to-end distance.
We define $m_{1}=x_{1}, m_{k}=x_{k}-x_{k-1}(k>1)$ and write

$$
\begin{equation*}
2 r_{L}^{2}=\left(\sum_{k=0} m_{L-3 k}\right)^{2}+\left(x_{L+1}-\sum_{k=0} m_{L-1-3 k}\right)^{2}+\left(x_{L+1}-\sum_{k=0}\left(m_{L-3 k}+m_{L-1-3 k}\right)\right)^{2} . \tag{11}
\end{equation*}
$$

Using the identities

$$
\begin{align*}
& \sum_{m=1}^{\infty} m z^{m}=(1-z)^{-1} \sum_{m=1}^{\infty} z^{m}, \tag{12}\\
& \sum_{m=1}^{\infty} m^{2} z^{m}=(1+z)(1-z)^{-2} \sum_{m=1}^{\infty} z^{m}, \tag{13}
\end{align*}
$$

we have

$$
\begin{equation*}
F(z)=z(1-z)^{-1} \sum_{L} R_{L}(z) g_{L}(z) \tag{14}
\end{equation*}
$$

where R_{L} is given by

$$
\begin{align*}
& R_{L}(z)=\frac{1}{2}\left(\sum_{k}\right.\left.\left(1-z^{3 k+1}\right)^{-1}\right)^{2}+\frac{1}{2}\left((1-z)^{-1}-\sum_{k^{\prime}}\left(1-z^{3 k^{\prime}+2}\right)^{-1}\right)^{2} \\
&+\frac{1}{2}\left((1-z)^{-1}-\sum_{k}\left(1-z^{3 k+1}\right)^{-1}-\sum_{k^{\prime}}\left(1-z^{3 k^{\prime}+2}\right)^{-1}\right)^{2} \\
&+z(1-z)^{-2}+\sum_{k} z^{3 k+1}\left(1-z^{3 k+1}\right)^{-2}+\sum_{k^{\prime}} z^{3 k^{\prime}+2}\left(1-z^{3 k^{\prime}+2}\right)^{-2}, \\
& \sum_{k}=\sum_{k=0}^{[(L-1) / 3]} \quad \sum_{k^{\prime}}=\sum_{k^{\prime}=0}^{[(L-2) / 3]} . \tag{15}
\end{align*}
$$

It has been pointed out by Blöte and Hilhorst (1984) that at fixed z the quantity $g_{L}(z)$ takes maximum value for $L=L_{0}(z) \sim \log 2 / \varepsilon$. Consequently we have

$$
\begin{equation*}
F(z) \sim R_{L_{0}}(z) G^{*}(z) \tag{16}
\end{equation*}
$$

To calculate the leading term in $R_{L_{0}}$ for $\varepsilon \rightarrow 0$, we replace the summations in (15) by integrals and it is elementary to show that

$$
\begin{equation*}
R_{L_{0}}(z) \sim(\log \varepsilon)^{2} / 3 \varepsilon^{2} \tag{17}
\end{equation*}
$$

It follows from (7), (10) and (16) that for $N \rightarrow \infty$

$$
\begin{equation*}
R_{N}^{*} \sim \pi^{-1} N^{1 / 2} \log N \tag{18}
\end{equation*}
$$

We now consider the proglem of all ssaws. It follows from I that, for $z=1-\boldsymbol{\varepsilon}$ and $\varepsilon \rightarrow 0$, the generating function behaves like

$$
\begin{equation*}
G(z) \sim 2 G_{6}(z)-G_{1}(z)-G_{2}(z) \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
2 G_{1} \sim 6 G_{2} \sim G_{6} \sim \varepsilon \exp \left(\pi^{2} / 6 \varepsilon\right) \tag{20}
\end{equation*}
$$

In analogy to (7), we have

$$
\begin{equation*}
N(z) \sim \pi^{2} / 6 \varepsilon^{2} \tag{21}
\end{equation*}
$$

Consider $G_{1}(z)$ first (see figure 3 of I). We deote the segment lengths by the integers

$$
\begin{equation*}
x_{1}, x_{2}, \ldots, x_{L-1}, x_{L}+y_{L^{\prime}-1}, y_{L^{\prime}-1}, \ldots, y_{1} \tag{22}
\end{equation*}
$$

where

$$
0<x_{1}<\ldots<x_{L}, \quad 0<y_{1}<\ldots<y_{L^{\prime}-1} .
$$

The length of the longest segment is defined to be $x_{L}+y_{L^{\prime}-1}$. We have

$$
\begin{gather*}
G_{1}(z)=\sum_{L, L^{\prime}=1}^{\infty} \sum_{x_{1}, \ldots, x_{L}} \sum_{y_{1}, \ldots, y_{L-1}} z^{x_{1}+\ldots+x_{L}+2 y_{L-1}+y_{L-2}+\ldots+y_{1}} \\
=z^{-1}(1-z) \sum_{L, L^{\prime}} g_{L}(z) g_{L}(z) \\
\quad=z^{-1}(1-z)\left(\sum_{L=1}^{\infty} g_{L}(z)\right)^{2} . \tag{23}
\end{gather*}
$$

The squared end-to-end distance is

$$
\begin{equation*}
\left(r_{L, L^{\prime}}\right)^{2}=\frac{1}{2}\left[(A-B)^{2}+(B-C)^{2}+(C-A)^{2}\right] \tag{24}
\end{equation*}
$$

where

$$
\begin{align*}
& A=\sum_{k=0} x_{L-1-3 k}+\sum_{k^{\prime}=0} y_{L^{\prime}-2-3 k^{\prime}} \\
& B=\sum_{k=0} x_{L-2-3 k}+\sum_{k^{\prime}=0} y_{L^{\prime}-1-3 k^{\prime}} \\
& C=\sum_{k=0} x_{L-3 k}+y_{L^{\prime}-1}+\sum_{k^{\prime}=0} y_{L^{\prime}-3-3 k^{\prime}} . \tag{25}
\end{align*}
$$

We define $m_{i}=x_{i}-x_{i-1}$ and $n_{j}=y_{j}-y_{j-1}\left(m_{1}=x_{1}\right.$ and $\left.n_{1}=y_{1}\right)$ where m_{i} and n_{j} are independent integer variables. We have

$$
\begin{align*}
& A-B=\sum_{k=0} m_{L-1-3 k}-\sum_{k^{\prime}} n_{L^{\prime}-1-3 k^{\prime}} \\
& C-B=\sum_{k=0}\left(m_{L-3 k}+m_{L-1-3 k}\right)+\sum_{k^{\prime}=0} n_{L^{\prime}-3-3 k^{\prime}} \tag{26}\\
& C-A=\sum_{k=0} m_{L-3 k}+\sum_{k^{\prime}=0}\left(n_{L^{\prime}-3-3 k^{\prime}}+n_{L^{\prime}-1-3 k^{\prime}}\right) .
\end{align*}
$$

When the expression of r^{2} is inserted inside the summations of (23), we have for $\varepsilon \rightarrow 0$

$$
\begin{equation*}
\left(R_{N}\right)^{2} \sim(\log \varepsilon)^{2} / \varepsilon^{2} \tag{27}
\end{equation*}
$$

where $N(\varepsilon)$ is the average chain length given by (21). Considerations of $G_{2}(z)$ and $G_{6}(z)$ yield identical results. Therefore finally we have

$$
\begin{equation*}
R_{N} \sim(2 \pi)^{-1}(6 N)^{1 / 2} \log N \tag{28}
\end{equation*}
$$

for $N \rightarrow \infty$.
This research was supported by the National Science Council, Republic of China.

References

Blöte H W J and Hilhorst H J 1984 J. Phys. A: Math. Gen. 17 L111-5
Guttmann A J and Hirschhorn M 1984 J. Phys. A: Math. Gen. 17 3613-4
Guttmann A J and Wormald N C 1984 J. Phys. A: Math. Gen. 17 L271-4
Joyce G S 1984 J. Phys. A: Math. Gen. 17 L463-7
Joyce G S and Brak R 1985 J. Phys. A: Math. Gen. 18 L293-8
Lin K Y 1985 J. Phys. A: Math. Gen. 18 L145-8
Privman V 1983 J. Phys. A: Math. Gen. 16 L571-3

